Affiliation:
1. Epithelial Function and Development Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 7ZJ, U.K.
Abstract
The composition of the intestinal luminal content varies considerably with diet. It is important therefore that the intestinal epithelium senses and responds to these significant changes and regulates its functions accordingly. Although it is becoming evident that the gut epithelium senses and responds to luminal nutrients, little is known about the nature of the nutrient sensing molecule and the downstream cellular events. A prototype example is the modulation in the capacity of the gut to absorb monosaccharides via the intestinal luminal membrane Na+/glucose cotransporter, SGLT1. The experimental evidence suggests that luminal sugar is sensed by a glucose sensor residing on the luminal membrane of the gut epithelium and linked to a G-protein-coupled receptor, cAMP/PKA (protein kinase A) pathway, resulting ultimately in modulation of intestinal monosaccharide absorption. Here we report the expression, at mRNA and protein levels, of members of the T1R sweet taste receptors, and the α-subunit of the G-protein gustducin, in the small intestine and the enteroendocrine cell line, STC-1. In the small intestine, there is a highly coordinated expression of sweet taste receptors and gustducin, a G-protein implicated in intracellular taste signal transduction, throughout the gut. The potential involvement of these receptors in sugar sensing in the intestine will facilitate our understanding of intestinal nutrient sensing, with implications for better nutrition and health maintenance.
Cited by
331 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献