The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival

Author:

WANG Xiantao1,MARTINDALE Jennifer L.1,LIU Yusen1,HOLBROOK Nikki J.1

Affiliation:

1. Gene Expression and Aging Section, Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Box 12, Baltimore, MD 21224-6825, U.S.A.

Abstract

The mammalian response to stress is complex, often involving multiple signalling pathways that act in concert to influence cell fate. To examine potential interactions between the signalling cascades, we have focused on the effects of a model oxidant stress in a single cell type through an examination of the relative influences of mitogen-activated protein kinases (MAPKs) as well as two proposed apoptosis regulators, nuclear factor κB (NF-κB) and Bcl-2, in determining cell survival. Treatment of HeLa cells with H2O2 resulted in a time- and dose-dependent induction of apoptosis accompanied by sustained activation of all three MAPK subfamilies: extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38. This H2O2-induced apoptosis was markedly enhanced when ERK2 activation was selectively inhibited by PD098059. Apoptosis decreased when JNK/SAPK activation was inhibited by expression of a dominant negative mutant form of SAPK/ERK kinase 1. Inhibition of the p38 kinase activity with p38-specific inhibitors SB202190 and SB203580 had no effect on cell survival. Because NF-κB activation by H2O2 is potentially related to both the ERK and JNK/SAPK signalling pathways, we examined the effects of inhibiting the activation of NF-κB; this interference had no effect on the cellular response to H2O2. Overexpression of the anti-apoptotic protein Bcl-2 significantly decreased the apoptosis seen after treatment with H2O2 without altering ERK or JNK/SAPK activities. Our results suggest that ERK and JNK/SAPK act in opposition to influence cell survival in response to oxidative stress, whereas neither p38 nor NF-κB affects the outcome. Bcl-2 acts independently and downstream of ERK and JNK/SAPK to enhance the survival of H2O2-treated cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 677 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3