Structure of complement receptor (CR) 2 and CR2-C3d complexes

Author:

Hannan J.12,Young K.12,Szakonyi G.3,Overduin M. J.4,Perkins S. J.5,Chen X.3,Holers V. M.12

Affiliation:

1. Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

2. Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

3. Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

4. Department of Pharmacology, University of Colorado Health Sciences Center, Denver, CO 80262, U.S.A.

5. Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, University College London, London NW3 2PF, U.K.

Abstract

Using X-ray crystallography, we have determined the structure of the first two short consensus repeats (SCRs) of human complement receptor (CR) 2 in complex with C3d. These studies revealed: (i) a primary site of interaction for C3d within SCR2 of CR2, (ii) a hydrophobic patch holding SCR1 to SCR2 in a rigid V-shape, (iii) a dimer formed by interactions between SCR1 of each molecule, (iv) several non-linear sequences on C3d that interact with CR2 and (v) mutations of C3d amino acids within the co-crystal interface that resulted in decreased binding. In addition, a polymorphism that results in decreased C3d binding and introduces a new glycosylation site predicted to disrupt the dimer interface was found in the New Zealand White autoimmune mouse strain. Although the co-crystal complex results are in agreement with a subset of prior studies, our additional findings, which demonstrate an extended SCR1-SCR2 structure in solution and differences in the kinetics of ligand-receptor interactions with longer forms of CR2, have suggested a more complex receptor-ligand interaction. To characterize this interaction further, several approaches directed at the determination of solution phase interactions as well as the analysis of the three-dimensional structure of CR2 alone and key CR2 mutants will be necessary.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3