Affiliation:
1. Division of Biopharmaceutics, Center for Bio-Pharmaceutical Sciences, University of Leiden, Sylvius Laboratories, P.O. Box 9503, 2300 RA Leiden
2. Department of Pediatrics, University of Groningen, Bloemsingel 10, 9712 KZ Groningen, The Netherlands
Abstract
Acetylated low-density lipoprotein (acetyl-LDL), biologically labelled in the cholesterol moiety of cholesteryl oleate, was injected into control and oestrogen-treated rats. The serum clearance, the distribution among the various lipoproteins, the hepatic localization and the biliary secretion of the [3H]cholesterol moiety were determined at various times after injection. In order to monitor the intrahepatic metabolism of the cholesterol esters of acetyl-LDL in vivo, the liver was subdivided into parenchymal, endothelial and Kupffer cells by a low-temperature cell-isolation procedure. In both control and oestrogen-treated rats, acetyl-LDL is rapidly cleared from the circulation, mainly by the liver endothelial cells. Subsequently, the cholesterol esters are hydrolysed, and within 1 h after injection, about 60% of the cell- associated cholesterol is released. The [3H]cholesterol is mainly recovered in the high-density lipoprotein (HDL) range of the serum of control rats, while low levels of radioactivity are detected in serum of oestrogen-treated rats. In control rats cholesterol is transported from endothelial cells to parenchymal cells (reverse cholesterol transport), where it is converted into bile acids and secreted into bile. The data thus provide evidence that HDL can serve as acceptors for cholesterol from endothelial cells in vivo, whereby efficient delivery to the parenchymal cells and bile is assured. In oestrogen-treated rats the radioactivity from the endothelial cells is released with similar kinetics as in control rats. However, only a small percentage of radioactivity is found in the HDL fraction and an increased uptake of radioactivity in Kupffer cells is observed. The secretion of radioactivity into bile is greatly delayed in oestrogen-treated rats. It is concluded that, in the absence of extracellular lipoproteins, endothelial cells can still release cholesterol, although for efficient transport to liver parenchymal cells and bile, HDL is indispensable.
Subject
Cell Biology,Molecular Biology,Biochemistry