Malignant hyperthermia mutation sites in the Leu2442–Pro2477 (DP4) region of RyR1 (ryanodine receptor 1) are clustered in a structurally and functionally definable area

Author:

Bannister Mark L.1,Hamada Tomoyo1,Murayama Takashi2,Harvey Peta J.3,Casarotto Marco G.3,Dulhunty Angela F.3,Ikemoto Noriaki14

Affiliation:

1. Boston Biomedical Research Institute, Watertown, MA 02472, U.S.A.

2. Department of Pharmacology, Juntendo University School of Medicine, Tokyo 113-8421, Japan

3. Division of Molecular Bioscience, John Curtin School of Medical Research, P.O. Box 334, Australian National University, Canberra, ACT 2601, Australia

4. Department of Neurology, Harvard Medical School, Boston, MA 02115, U.S.A.

Abstract

To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (ryanodine receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442–Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure–function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two α-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3