Characterization of A-kinase-anchoring disruptors using a solution-based assay

Author:

Stokka Anne J.1,Gesellchen Frank2,Carlson Cathrine R.1,Scott John D.3,Herberg Friedrich W.2,Taskén Kjetil1

Affiliation:

1. Biotechnology Centre of Oslo, University of Oslo, P.O. Box 1125, Blindern, 0317 Oslo, Norway

2. Abteilung für Biochemie, Fachbereich Naturwissenschaften, Universität Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany

3. Howard Hughes Medical Institute, Vollum Institute, Oregon Health and Science University, Portland, OR 97239, U.S.A.

Abstract

Subcellular localization of PKA (cAMP-dependent protein kinase or protein kinase A) is determined by protein–protein interactions between its R (regulatory) subunits and AKAPs (A-kinase-anchoring proteins). In the present paper, we report the development of the Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen™) as a means to characterize AKAP-based peptide competitors of PKA anchoring. In this assay, the prototypic anchoring disruptor Ht31 efficiently competed in RIIα isoform binding with RII-specific and dual-specificity AKAPs (IC50 values of 1.4±0.2 nM and 6±1 nM respectively). In contrast, RIα isoform binding to a dual-specific AKAP was less efficiently competed (IC50 of 156±10 nM). Characterization of two RI-selective anchoring disruptors, RIAD (RI-anchoring disruptor) and PV-38 revealed that RIAD (IC50 of 13±1 nM) was 20-fold more potent than PV-38 (IC50 of 304±17 nM) and did not compete in the RIIα–AKAP interaction. We also observed that the kinetics of RII displacement from pre-formed PKA–AKAP complexes and competition of RII–AKAP complex formation by Ht31 differed by an order of magnitude when the component parts were mixed in vitro. No such difference in potency was seen for RIα–AKAP complexes. Thus the AlphaScreen assay may prove to be a valuable tool for detailed characterization of a variety of PKA–AKAP complexes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3