Structural investigation of loose connective tissue by using a series of dextran fractions as non-interacting macromolecular probes

Author:

Meyer F A,Koblentz M,Silberberg A

Abstract

The ability of the uncharged open-coil dextran molecules to penetrate tissue space, without coil-shape change, was utilized to probe (by partitioning experiments) the structural arrangement of the collagen-fibre network and the proteoglycan system. Hyaluronidase digests most of the proteoglycans away and enables the respective contributions to the exclusion volume to be evaluated by using a series of different-molecular-weight dextrans. It appears that the major part of the exclusion volume is due to the collagen-fibril as a rod and the dextran coil as an impenetrable sphere. The additional exclusion due to the proteoglycans could be accounted for by a set of points (regions of high proteoglycan-segment density) over which the dextran coild cannot pass. These points are an average of 50 nm apart and are indicative of local extensive entanglement of high-molecular-weight proteoglycans with each other. Reasons are given why these entanglements could not act as cross-links in long-term elastic loading of the tissue.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3