Using in vivo zebrafish models to understand the biochemical basis of neutrophilic respiratory disease

Author:

Martin Jane S.1,Renshaw Stephen A.1

Affiliation:

1. MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.

Abstract

Neutrophilic inflammation in the lung protects against infectious disease, and usually resolves spontaneously after removal of the inflammatory stimulus. However, much lung disease is caused by a failure of resolution of neutrophilic inflammation. Our laboratory is seeking an understanding of the biochemical basis of inflammation resolution, using the zebrafish model system. Zebrafish larvae are transparent, allowing visualization of GFP (green fluorescent protein)-labelled leucocytes during inflammation in vivo, and they can be readily manipulated by a range of forward and reverse genetic techniques. This combination of advantages makes zebrafish a powerful tool for the study of in vivo inflammatory processes. Using this model, we have visualized the process of inflammation resolution in vivo, and identified a role for apoptosis in this process. In addition, we have performed a forward genetic screen for mutants with defective resolution of inflammation, and reverse genetic experiments examining the influence of candidate genes on inflammation resolution. We have established a platform for screening for compounds with anti-inflammatory activity, which has yielded a number of interesting leads. Looking forward to succeed in the future, we are working at combining mutants, transgenes and pharmacological agents to dissect the biochemical basis of inflammation resolution, and to identify compounds that might be used to treat patients with respiratory disease.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference68 articles.

1. Immunity and the invertebrates;Beck;Sci. Am.,1996

2. Natural selection on the Drosophila antimicrobial immune system;Lazzaro;Curr. Opin. Microbiol.,2008

3. Toll-like receptors: taking an evolutionary approach;Leulier;Nat. Rev. Genet.,2008

4. The pathogenesis of chronic obstructive lung diseases: implications for therapy;Stockley;QJM,1995

5. Is the neutrophil the key effector cell in severe asthma?;Kamath;Thorax,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3