Amazing grass: developmental genetics of maize domestication

Author:

Vollbrecht E.1,Sigmon B.1

Affiliation:

1. Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, U.S.A.

Abstract

Crop plants were domesticated by prehistoric farmers through artificial selection to provide a means of feeding the human population. This article discusses the developmental genetics of crop domestication and improvement, including the historical framework and recent approaches in maize and other grasses. In many cases, selecting for a plant form that correlates with productivity involves controlling meristem activity. In the domestication of modern maize from its progenitor Zea mays ssp. parviglumis, QTL (quantitative trait loci) mapping, genetics and population genomics approaches have identified several genes that contain signatures of selection. Only a few genes involved in the derivation of the highly productive maize ear have been identified, including teosinte glume architecture1 and ramosa1. Future prospects hinge on forward and reverse genetics, as well as on other approaches from the developing discipline of evo-devo (evolutionary developmental biology).

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3