Multiple pseudouridine synthase activities for small nuclear RNAs

Author:

Patton J R1

Affiliation:

1. Department of Pathology, School of Medicine, University of South Carolina, Columbia, SC 29208, U.S.A.

Abstract

The formation of pseudouridine (psi) in human U1, U2 and U5 small nuclear RNAs (snRNAs) was investigated using HeLa cell extracts. Unmodified snRNAs were synthesized in vitro and the extent of psi formation was determined after incubation in cell extracts. The formation of psi on labelled substrates was monitored in the presence of 5-fluorouracil (5-FU)-containing snRNAs as inhibitors of psi formation. The conversion of uridine to psi was inhibited only when the cognate 5-FU-containing inhibitor snRNA was included in the reaction. For example, 5-FU-containing U1 RNA inhibited psi formation in unmodified U1 RNA, but not in (unmodified) U2 or U5 RNAs. The results suggest that there are at least three activities that form psi in these snRNAs. The 5-FU-containing RNAs were stable during incubation in the cell extracts. A 12-fold molar excess of unlabelled U1 RNA did not inhibit psi formation on a labelled U1 RNA substrate, whereas a 3-fold molar excess of 5-FU-containing U1 RNA nearly abolished psi formation on the U1 substrate. The fact that 5-FU-containing snRNAs are potent inhibitors of psi formation in these pre-mRNA splicing cofactors raises the possibility that this is related to the cytotoxicity of fluoropyrimidines in cancer chemotherapy.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RNA modification: mechanisms and therapeutic targets;Molecular Biomedicine;2023-08-24

2. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2019-03

3. The Role of Noncoding RNA Pseudouridylation in Nuclear Gene Expression Events;Frontiers in Bioengineering and Biotechnology;2018-02-08

4. Posttranscriptional RNA Pseudouridylation;RNA Modification;2017

5. Posttranscriptional Modifications in the U Small Nuclear RNAs;Modification and Editing of RNA;2014-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3