Glutathione analogues as novel inhibitors of rat and human glutathione S-transferase isoenzymes, as well as of glutathione conjugation in isolated rat hepatocytes and in the rat in vivo

Author:

Ouwerkerk-Mahadevan S1,van Boom J H2,Dreef-Tromp M C2,Ploemen J H T M3,Meyer D J4,Mulder G J1

Affiliation:

1. Division of Toxicology, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9503, 2300 RA Leiden, U.K.

2. Division of Organic Chemistry, Leiden University, Leiden U.K.

3. Department of Biological Toxicology, TNO Toxicology Institute, Zeist, The Netherlands, U.K.

4. Cancer Research Campaign Molecular Toxicology Research Group, Department of Biochemistry and Molecular Biology, University College London, London, U.K.

Abstract

Inhibitors of rat and human Alpha- and Mu-class glutathione S-transferases that effectively inhibit the glutathione (GSH) conjugation of bromosulphophthalein in the rat liver cytosolic fraction, isolated rat hepatocytes and in the rat liver in vivo have been developed. The GSH analogue (R)-5-carboxy-2-gamma-(S)-glutamylamino-N-hexylpentamide [Adang, Brussee, van der Gen and Mulder (1991) J. Biol. Chem. 266, 830-836] was used as the lead compound. To obtain more potent inhibitors, it was modified by replacement of the N-hexyl moiety by N-2-heptyl and by esterification of the 5-carboxy group with ethyl and dodecyl groups. In isolated hepatocytes, the branched N-2-heptyl derivatives were stronger inhibitors of GSH conjugation of bromosulphophthalein than the N-hexyl derivatives. The ethyl ester compounds were more efficient than the corresponding unesterified derivatives. The dodecyl ester of the N-2-heptyl analogue was the most effective inhibitor in isolated hepatocytes, but was relatively toxic in vivo. However, the corresponding ethyl ester was a potent in vivo inhibitor: GSH conjugation of bromosulphophthalein (as assessed by biliary excretion of the conjugate) was decreased by 70% after administration of a dose of 200 mumol/kg. The isoenzyme specificity of the inhibitors towards purified rat and human glutathione S-transferases was also examined. The unesterified compounds were more potent than the esterified analogues, and inhibited Alpha- and Mu-class isoenzymes of both rat and human glutathione S-transferase (Ki range 1-40 microM). Other GSH-dependent enzymes, i.e. GSH peroxidase, GSH reductase and gamma-glutamyltranspeptide, were not inhibited. Thus (R)-5-ethyloxycarbonyl-2-gamma-(S)-glutamylamino-N-2-hept ylpentamide, the in vivo inhibitor of GSH conjugation, may be useful in helping to assess the role of the Alpha and Mu classes of glutathione S-transferases in cellular biochemistry, physiology and pathology.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3