Regulation of ligand binding to glycoprotein IIb-IIIa (integrin αIIbβ3) in isolated platelet membranes

Author:

Smyth S S1,Parise L V1

Affiliation:

1. Department of Pharmacology and Center for Thrombosis and Hemostasis, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, U.S.A.

Abstract

The major platelet integrin, glycoprotein IIb-IIIa, binds soluble fibrinogen only after platelet activation. To investigate the mechanism by which platelets convert glycoprotein IIb-IIIa into a functional fibrinogen receptor, we characterized the opening and closing of fibrinogen-binding sites in isolated platelet membranes and compared the regulatory properties of membrane-bound glycoprotein IIb-IIIa with those of the detergent-solubilized receptor. Basal fibrinogen binding to the membranes possessed many of the properties of fibrinogen binding to activated platelets; however, less than 10% of glycoprotein IIb-IIIa in the membranes was capable of binding fibrinogen. Preincubating the membranes with either an activating glycoprotein IIb-IIIa antibody or alpha-chymotrypsin increased fibrinogen binding. In contrast, agents that require intracellular mediators, such as platelet agonists, guanine-nucleotide-binding-protein activators and purified protein kinase C, did not stimulate fibrinogen binding to the membranes, suggesting that cytosolic factor(s) may be required for activation of the receptor in platelets. Occupancy of glycoprotein IIb-IIIa in the membranes with RGD (Arg-Gly-Asp)-containing peptides reversibly exposed neoantigenic epitopes and fibrinogen-binding sites in the receptor. These conformational changes required membrane fixation to be maintained following peptide removal. Similar results were obtained with purified glycoprotein IIb-IIIa incorporated into phospholipid vesicles, indicating that the resting state of the receptor is favoured in these environments. In contrast, when the conformation of detergent-solubilized glycoprotein IIb-IIIa was altered by exposure to RGD-containing peptides, the receptor remained active even after incorporation into phospholipid vesicles. These results demonstrate that platelet membranes are a useful model in which to study the regulation of glycoprotein IIb-IIIa and suggest that the environment surrounding the receptor may have a profound influence on this process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3