Affiliation:
1. DBMS/LBIO/BRCE, INSERM U244, CEN.G, BP85X, 38041 Grenoble, Cedex, France.
Abstract
Lyso-platelet-activating factor (lyso-PAF): acetyl-CoA acetyltransferase (EC 2.3.1.67) enzyme activity was characterized for the first time in bovine adrenocortical tissue. It was found to be associated with the microsomal membrane fraction, in which it exhibited a specific activity of 0.4 nmol/min per mg of protein and catalytic properties similar to those described in other cell types. The adrenocortical acetyltransferase activity was increased by 2-3-fold on incubation of the preparation with purified protein kinase C (PKC) under phosphorylating condition. This activation was optimal after 5 min of incubation and paralleled an increase in PKC-catalysed 32P incorporation into microsomal proteins. Both acetyltransferase activation and protein phosphorylation were dependent on the presence of Ca2+ and phospholipids, and were blocked in the presence of the potent PKC inhibitor H-7. In the intact adrenocortical cell, angiotensin II and a potent phorbol ester (phorbol 12-myristate 13-acetate) were able to rapidly induce an increase in the biosynthesis of PAF, which was mostly released into the extracellular medium. These data suggest that bovine adrenocortical lyso-PAF acetyltransferase may be regulated by a PKC-dependent activation pathway, whereas no evidence for an additional adrenocorticotropin/cyclic AMP-dependent stimulation process was obtained in this cell type. Bovine adrenocortical cell membrane preparations were shown to possess high-affinity PAF-binding sites (Kd approximately 0.5 nM). Altogether, these observations suggest that PAF production and release may play a role in the autocrine or paracrine control of adrenocortical cell activation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献