Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: the case for pantothenamides

Author:

Saliba Kevin J.12,Spry Christina13

Affiliation:

1. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia

2. Medical School, The Australian National University, Canberra, ACT 0200, Australia

3. Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.

Abstract

Malaria kills more than half a million people each year. There is no vaccine, and recent reports suggest that resistance is developing to the antimalarial regimes currently recommended by the World Health Organization. New drugs are therefore needed to ensure malaria treatment options continue to be available. The intra-erythrocytic stage of the malaria parasite's life cycle is dependent on an extracellular supply of pantothenate (vitamin B5), the precursor of CoA (coenzyme A). It has been known for many years that proliferation of the parasite during this stage of its life cycle can be inhibited with pantothenate analogues. We have shown recently that pantothenamides, a class of pantothenate analogues with antibacterial activity, inhibit parasite proliferation at submicromolar concentrations and do so competitively with pantothenate. These compounds, however, are degraded, and therefore rendered inactive, by the enzyme pantetheinase (vanin), which is present in serum. In the present mini-review, we discuss the two strategies that have been put forward to overcome pantetheinase-mediated degradation of pantothenamides. The strategies effectively provide an opportunity for pantothenamides to be tested in vivo. We also put forward our ‘blueprint’ for the further development of pantothenamides (and other pantothenate analogues) as potential antimalarials.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3