Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis

Author:

Xie Longxiang12,Yang Wenmin1,Fan Xiangyu3,Xie Jianping1ORCID

Affiliation:

1. Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China

2. Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China

3. School of Biological Science and Technology, University of Jinan, Shandong 250022, China

Abstract

Abstract Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3