Novel haem co-ordination variants of flavocytochrome P450 BM3

Author:

Girvan Hazel M.1,Toogood Helen S.1,Littleford Rachael E.2,Seward Harriet E.3,Smith W. Ewen2,Ekanem Idorenyin S.1,Leys David1,Cheesman Myles R.4,Munro Andrew W.1

Affiliation:

1. Manchester Interdisciplinary Biocentre, University of Manchester, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, U.K.

2. Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.

3. Department of Biochemistry, University of Leicester, The Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, U.K.

4. School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, U.K.

Abstract

Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH–cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys264 interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a ∼360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala264 is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in Nature.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3