Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5

Author:

PARK Sang-Ho1,KIM Hyung-Eun1,KIM Chi-Man1,YUN Hee-Jeong1,CHOI Eung-Chil1,LEE Bong-Jin1

Affiliation:

1. Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea

Abstract

Gaegurin 5 (GGN5) is a cationic 24-residue anti-microbial peptide isolated from the skin of a Korean frog, Rana rugosa. It contains a central proline residue and an intra-residue disulphide bridge in its C-terminus, which are common to the anti-microbial peptides found in Ranidae. We determined the solution structure of GGN5 bound to SDS micelles for the first time and investigated the role of proline, cysteine and a disulphide bridge on the structure and activity of GGN5. GGN5 adopts an amphipathic α-helical structure spanning residues 3—20 kinked around Pro-14, which allows the hydrophobic residues to reside in the concave helical region, and a disulphide-bridged loop-like conformation in its C-terminus. By replacement of proline with alanine (PAGGN5), a straight and rigid helix was formed in the central region and was more stable than the kinked helix. Reduction of a disulphide bridge in the C-terminus (GGN5SH) maintained the loosely ordered loop-like conformation, while the replacement of two cysteines with serines (CSGGN5) caused the C-terminal conformation to be completely disordered. The magnitude of anti-microbial activity of the peptides was closely related to their helical stability in the order PAGGN5>GGN5>GGN5SH>CSGGN5, suggesting that the helical stability of the peptides is important for anti-microbial activity. On the other hand, the significant increase of haemolytic activity of PAGGN5 implies that a helical kink of GGN5 could be involved in the selectivity of target cells. The location of GGN5 and PAGGN5, analysed using paramagnetic probes, was mainly at the surface of SDS micelles, although the location of the N-terminal region was slightly different between them.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3