Effect of starvation on glutamine ammoniagenesis and gluconeogenesis in isolated mouse kidney tubules

Author:

CONJARD Agnès1,BRUN Virginie1,MARTIN Mireille1,BAVEREL Gabriel1,FERRIER Bernard1

Affiliation:

1. Laboratoire de Physiopathologie Métabolique et Rénale, Institut National de la Santé et de la Recherche Médicale, U499, Faculté de Médecine R.T.H. Laennec, rue G. Paradin, 69372 Lyon Cedex 08, France

Abstract

It has been shown recently that glutamine is taken up by the mouse kidney in vivo. However, knowledge about the fate of this amino acid and the regulation of its metabolism in the mouse kidney remains poor. Given the physiological and pathophysiological importance of renal glutamine metabolism and the increasing use of genetically modified mice in biological research, we have conducted a study to characterize glutamine metabolism in the mouse kidney. Proximal tubules isolated from fed and 48h-starved mice and then incubated with a physiological concentration of glutamine, removed this amino acid and produced ammonium ions at similar rates. In agreement with this observation, activities of the ammoniagenic enzymes, glutaminase and glutamate dehydrogenase, were not different in the renal cortex of fed and starved mice, but the glutamate dehydrogenase mRNA level was elevated 4.5-fold in the renal cortex from starved mice. In contrast, glucose production from glutamine was greatly stimulated whereas the glutamine carbon removed, that was presumably completely oxidized in tubules from fed mice, was virtually suppressed in tubules from starved animals. In accordance with the starvation-induced stimulation of glutamine gluconeogenesis, the activities and mRNA levels of glucose-6-phosphatase, and especially of phosphoenolpyruvate carboxykinase, but not of fructose-1,6-bisphosphatase, were increased in the renal cortex of starved mice. On the basis of our in vitro results, the elevated urinary excretion of ammonium ions observed in starved mice probably reflected an increased transport of these ions into the urine at the expense of those released into the renal veins rather than a stimulation of renal ammoniagenesis.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3