A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-δ1

Author:

KANEMATSU Takashi1,MISUMI Yoshio2,WATANABE Yutaka3,OZAKI Shoichiro3,KOGA Toshitaka1,IWANAGA Sadaaki4,IKEHARA Yukio2,HIRATA Masato1

Affiliation:

1. Department of Biochemistry, Faculty of Dentistry, Kyushu University, Fukuoka 812-82, Japan

2. Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka 814-80, Japan

3. Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

4. Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-81, Japan

Abstract

We have reported that two inositol 1,4,5-trisphosphate binding proteins, with molecular masses of 85 and 130 kDa, were purified from rat brain; the former protein was found to be the ∆1-isoenzyme of phospholipase C (PLC-∆1) and the latter was an unidentified novel protein [Kanematsu, Takeya, Watanabe, Ozaki, Yoshida, Koga, Iwanaga and Hirata (1992) J. Biol. Chem. 267, 6518-6525]. Here we describe the isolation of the full-length cDNA for the 130 kDa Ins(1,4,5)P3 binding protein, which encodes 1096 amino acids. The predicted sequence of the 130 kDa protein had 38.2% homology to that of PLC-∆1. Three known domains of PLC-∆1 (pleckstrin homology and putative catalytic X and Y domains) were located at residues 110-222, 377-544 and 585-804 with 35.2%, 48.2% and 45.8% homologies respectively. However, the protein showed no PLC activity to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol. The 130 kDa protein expressed by transfection in COS-1 cells bound Ins(1,4,5)P3 in the same way as the molecule purified from brain. Thus the 130 kDa protein is a novel Ins(1,4,5)P3 binding protein homologous to PLC-∆1, but with no catalytic activity. The functional significance of the 130 kDa protein is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3