Insights into the structure and function of the histidine kinase ComP from Bacillus amyloliquefaciens based on molecular modeling

Author:

Wang Lulu12,Fan Ruochen12,Li Zhuting23,Wang Lina4,Bai Xue23,Bu Tingting23,Dong Yuesheng1,Xu Yongbin23,Quan Chunshan23ORCID

Affiliation:

1. 1School of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, Liaoning, China

2. 2Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, China

3. 3Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, Liaoning, China

4. 4Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Lvshun Road, Dalian 116044, Liaoning, China

Abstract

Abstract The ComPA two-component signal transduction system (TCS) is essential in Bacillus spp. However, the molecular mechanism of the histidine kinase ComP remains unclear. Here, we predicted the structure of ComP from Bacillus amyloliquefaciens Q-426 (BaComP) using an artificial intelligence approach, analyzed the structural characteristics based on the molecular docking results and compared homologous proteins, and then investigated the biochemical properties of BaComP. We obtained a truncated ComPS protein with high purity and correct folding in solution based on the predicted structures. The expression and purification of BaComP proteins suggested that the subdomains in the cytoplasmic region influenced the expression and stability of the recombinant proteins. ComPS is a bifunctional enzyme that exhibits the activity of both histidine kinase and phosphotransferase. We found that His571 played an obligatory role in the autophosphorylation of BaComP based on the analysis of the structures and mutagenesis studies. The molecular docking results suggested that the HATPase_c domain contained an ATP-binding pocket, and the ATP molecule was coordinated by eight conserved residues from the N, G1, and G2 boxes. Our study provides novel insight into the histidine kinase BaComP and its homologous proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3