Scaffold stability and P14′ residue steric hindrance in the differential inhibition of FXIIa by Aedes aegypti trypsin inhibitor versus Infestin-4

Author:

Walvekar Varsha Ashok1,Ramesh Karthik1,Kannan Muthu1,Kini R. Manjunatha12ORCID,Sivaraman J.1ORCID,Mok Yu Keung1ORCID

Affiliation:

1. Department of Biological Sciences, 16 Science Drive 4, National University of Singapore, Singapore 117558

2. Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600

Abstract

Abstract Kazal-type protease inhibitors strictly regulate Factor XIIa (FXIIa), a blood-clotting serine protease. However, when negatively charged surface of prosthetic device come into contact with FXII, it undergoes conformational change and auto-activation, leading to thrombus formation. Some research suggests that Kazal-type protease inhibitor specificity against FXIIa is governed solely by the reactive-site loop sequence, as this sequence makes most-if not all-of the direct contacts with FXIIa. Here, we sought to compare the inhibitory properties of two Kazal-type inhibitors, Infestin-4 (Inf4), a potent inhibitor of FXIIa, and Aedes aegypti trypsin inhibitor (AaTI), which does not inhibit FXIIa, to better understand Kazal-type protease specificity and determine the structural components responsible for inhibition. There are only three residue differences in the reactive-site loop between AaTI and Inf4. Through site-directed mutagenesis, we show that the reactive-site loop is only partially responsible for the inhibitory specificity of these proteases. The protein scaffold of AaTI is unstable due to an elongated C5C6 region. Through chimeric study, we show that swapping the protease-binding loop and the C5C6 region from Inf4 with that of AaTI can partially enhance the inhibitory activity of the AaTI_Inf4 chimera. Furthermore, the additional substitution of Asn at the P14′ position of AaTI with Gly (Gly27 in Inf4) absolves the steric clashing between AaTI and the surface 140-loop of FXIIa, and increases the inhibition of the chimeric AaTI to match that of wild-type Inf4. Our findings suggest that ancillary regions in addition to the reactive-site loop sequence are important factors driving Kazal-type inhibitor specificity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3