Skeletal muscle biochemical origin of exercise intensity domains and their relation to whole-body V̇O2 kinetics

Author:

Korzeniewski Bernard1,Rossiter Harry B.2

Affiliation:

1. 1BioSimulation Center, Kraków, Poland

2. 2Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90254, U.S.A.

Abstract

Abstract This article presents the biochemical intra-skeletal-muscle basis of exercise intensity domains: moderate (M), heavy (H), very heavy (VH) and severe (S). Threshold origins are mediated by a ‘Pi double-threshold’ mechanism of muscle fatigue, which assumes (1) additional ATP usage, underlying muscle V̇O2 and metabolite slow components, is initiated when inorganic phosphate (Pi) exceeds a critical value (Picrit); (2) exercise is terminated because of fatigue, when Pi reaches a peak value (Pipeak); and (3) the Pi increase and additional ATP usage increase mutually stimulate each other forming a positive feedback. M/H and H/VH borders are defined by Pi on-kinetics in relation to Picrit and Pipeak. The values of the ATP usage activity, proportional to power output (PO), for the M/H, H/VH and VH/S borders are lowest in untrained muscle and highest in well-trained muscle. The metabolic range between the M/H and H/VH border (or ‘H space’) decreases with muscle training, while the difference between the H/VH and VH/S border (or ‘VH space’) is only weakly dependent on training status. The absolute magnitude of the muscle V̇O2 slow-component, absent in M exercise, rises gradually with PO to a maximal value in H exercise, and then decreases with PO in VH and S exercise. Simulations of untrained, physically active and well-trained muscle demonstrate that the muscle M/H border need not be identical to the whole-body M/H border determined from pulmonary V̇O2 on-kinetics and blood lactate, while suggesting that the biochemical origins of the H/VH border reside within skeletal muscle and correspond to whole-body critical power.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

Reference50 articles.

1. Exercise: kinetic considerations for gas exchange;Rossiter;Compr. Physiol.,2011

2. Oxygen uptake kinetics;Poole;Compr. Physiol.,2012

3. Domains of aerobic function and their limiting parameters;Whipp,1996

4. Critical power: implications for determination of V̇O2max and exercise tolerance;Jones;Med. Sci. Sports Exerc.,2010

5. Critical power: an important fatigue threshold in exercise physiology;Poole;Med. Sci. Sports Exerc.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3