Analysis of DNMT1 gene variants in progression of neural tube defects—an in silico to in vitro approach

Author:

Sadhukhan Susanta1,Paul Nirvika1,Ghosh Sudakshina2,Munian Dinesh3,Ganguly Kausik4,Ghosh Krishnendu1,Sengupta Mainak4,Das Madhusudan1ORCID

Affiliation:

1. 1Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India

2. 2Department of Zoology, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata 700006, India

3. 3Department of Neonatology, Institute of Postgraduate Medical Education and Research, 244 Acharya Jagadish Chandra Bose Road, Kolkata 700020, India

4. 4Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India

Abstract

Abstract Neural tube defects (NTDs) are significant congenital deformities of the central nervous system among which spina bifida is the most common form that occurs due to defect in the neurulation process of embryogenesis. NTDs are among the most common type of birth defects occurring at a range of 0.5–10 in every 1000 live births worldwide and are thought to have multifactorial etiology, including multigenetic and epigenetic notions. Epigenetic regulations control differential gene expression in normal and disease phenotypes. DNA methylation is a significant epigenetic process, guided by DNMT1, one of the most important maintenance methylating agents. However, the relationship between DNMT1 and NTDs had always been inconclusive and poorly understood. In the present study, by utilizing in silico methodologies we tried to figure out potent single nucleotide variants (SNVs) that could play roles in generating functional differences in DNMT1 expression and we also tried to check (by in vitro method) if there is any connection between DNMT1 expression and spina bifida condition. A number of coding and non-coding (both intragenic and intergenic) SNVs of DNMT1 were found (using the in silico methods) that have potentials to alter its expression. From the in vitro experimentations, differential DNMT1 RNA expressions were found between spina bifida affected newborns and their respective mothers when compared with controls. It is the first report of NTD from Eastern India precisely showing inverse correlation between DNMT1 expression and occurrence of NTD. The findings of the present study could be further considered for early prognosis and future experimental designs.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3