Secretagogue-induced phosphoinositide metabolism in human leucocytes

Author:

Dougherty R W,Godfrey P P,Hoyle P C,Putney J W,Freer R J

Abstract

The relationship between receptor binding of the formylated peptide chemoattractant formylmethionylleucylphenylalanine (fMet-Leu-Phe), lysosomal enzyme secretion and metabolism of membrane phospholipids was evaluated in both human polymorphonuclear leucocytes (PMN) and the dimethyl sulphoxide (Me2SO)-stimulated human myelomonocytic HL-60 leukaemic cell line. In both cell types, exposure to fMet-Leu-Phe (100 nM) induced rapid lysosomal enzyme secretion (maximal release less than 30 s) and marked changes in the 32P-labelling of the inositol lipids phosphatidylinositol (PtdIns), phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] as well as phosphatidic acid (PtdA). Specifically, levels of [32P]PtdIns and [32P]PtdIns(4,5)P2 decreased rapidly (peak decrease at 10-15s), with a subsequent increase at 30 s and later. PtdIns4P and PtdA showed only an increase. In Me2SO-differentiated HL-60 cells prelabelled with [3H]inositol for 20 h, fMet-Leu-Phe caused a net increase in the cellular content of [3H]inositol phosphates, including a rapid increase in [3H]inositol 1,4,5-trisphosphate, suggesting that PtdIns(4,5)P2 breakdown occurs by a phospholipase C mechanism. Both lysosomal enzyme secretion and changes in phospholipid metabolism occur over the same agonist concentration range with a similar time course. Binding of [3H]fMet-Leu-Phe, although occurring over the same concentration range, exhibited markedly slower kinetics. Although depletion of extracellular Ca2+ had no effect on ligand-induced polyphosphoinositide turnover, PtdIns turnover, PtdA labelling and lysosomal enzyme secretion were severely curtailed. These studies demonstrate a receptor-mediated enhancement of phospholipid turnover that correlates with a specific biological response to fMet-Leu-Phe. Further, the results are consistent with the idea that phospholipase C-mediated degradation of PtdIns(4,5)P2, which results in the formation of inositol trisphosphate, is an early step in the stimulus-secretion coupling pathway of the neutrophil. The lack of correlation between these two responses and the equilibrium-binding condition suggests that either these parameters are responsive to the rate of ligand-receptor interaction or only fractional occupation is required for a full biological response.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3