The NADPH-oxidase-associated H+ channel is opened by arachidonate

Author:

Henderson L M1,Chappell J B1

Affiliation:

1. Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, U.K.

Abstract

The H+ channel associated with the generation of O2.- by NADPH oxidase and the oxidase itself must both be activated in response to stimuli (e.g. phorbol esters, chemotactic peptides, certain fatty acids). We have investigated the effects of membrane potential, an imposed pH gradient and a combination of the two (the protonmotive force) on the H+ conductivity of the cytoplast membrane. H+ conductivity was observed only in the presence of arachidonate and not in its absence. In the presence of arachidonate, H+ movement was determined by the protonmotive force. The effect of arachidonate was probably on a channel, since this fatty acid did not significantly increase the H+ permeability of artificial phospholipid membranes. It appears, therefore, that arachidonate is required both for the activation of O2.- production and the associated H(+)-channel-mediated efflux.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3