Functional compartments of sulphatide metabolism in cultured living cells: evidence for the involvement of a novel sulphatide-degrading pathway

Author:

Tempesta M C1,Salvayre R1,Levade T1

Affiliation:

1. Laboratoire de Biochimie, Institut Louis Bugnard, C.H.U. Rangueil, 1 Avenue Jean Poulhes, 31054 Toulouse Cedex, France

Abstract

The modes of uptake and degradation of radiolabelled cerebroside sulphate (CS or sulphatide) were investigated in cultured living skin fibroblasts and Epstein-Barr virus-transformed lymphoblastoid cell lines established from control individuals and patients affected with metachromatic leucodystrophy (cerebroside sulphatase deficiency), multiple sulphatase deficiency and low-density-lipoprotein-receptor-negative familial hypercholesterolaemia. In both cell types, CS was taken up through a non-receptor-mediated process. In fibroblasts, CS degradation occurred intralysosomally as was evident from the findings that fibroblasts from metachromatic leucodystrophic patients accumulated the sulphatide and that chloroquine inhibited its degradation by normal cells. In contrast, under similar conditions of CS availability, lymphoblastoid cell lines from patients with metachromatic leucodystrophy could degrade the incorporated sulphatide exactly as their normal counterparts. This metabolic pathway was also fully active in lymphoblastoid cells from patients with multiple sulphatase deficiency and was not inhibited by chloroquine treatment. These data are consistent with a non-lysosomal type of hydrolysis. In addition to the lysosomal and non-lysosomal compartments, a third compartment was identified in the two cell types which is probably formed by the pool of the sulphatide molecules incorporated into the plasma membrane. This is the first report on the existence of a CS-degrading pathway in intact cells with deficient lysosomal cerebroside sulphatase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3