Fuel-sensing mechanisms integrating lipid and carbohydrate utilization

Author:

Sugden M. C.1,Bulmer K.1,Holness M.J.1

Affiliation:

1. Department of Diabetes and Metabolic Medicine, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary, University of London, London E1 4NS, U.K.

Abstract

Fuel metabolism is highly regulated to ensure adequate energy for cellular function. The contribution of the major metabolic fuels - glucose, lactate and fatty acids (FAs) - often reflects their circulating levels. In addition, regulatory crosstalk and fuel-induced hormone secretion ensures appropriate and co-ordinate fuel utilization. Because its activity can either determine or reflect fuel preference (carbohydrate versus fat), the pyruvate dehydrogenase complex (PDC) occupies a pivotal position in fuel cross-talk. Active PDC permits glucose oxidation and allows the formation of mitochondrially derived intermediates (e.g. malonyl-CoA and citrate) that reflect fuel abundance. FA oxidation suppresses PDC activity. PDC inactivation by phosphorylation is catalysed by pyruvate dehydrogenase kinases (PDKs) 1–4, which are regulated differentially by metabolite effectors. Most tissues contain at least two and often three of the PDK isoforms. We develop the hypothesis that PDK4 is a ‘lipid status’-responsive PDK isoform facilitating FA oxidation and signalling through citrate formation. Substrate interactions at the level of gene transcription extend glucose-FA interactions to the longer term. We discuss potential targets for substrate-mediated transcriptional regulation in relation to selective PDK isoform expression and the influence of altered PDK isoform expression in fuel sensing, selection and utilization.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hepatic Lipidosis in Ruminants;Veterinary Clinics of North America: Food Animal Practice;2023-07

2. Rapid and precise detection of cancers via label-free SERS and deep learning;Analytical and Bioanalytical Chemistry;2023-05-17

3. Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue;International Journal of Molecular Sciences;2022-01-14

4. Metabolic‐sensing of the skeletal muscle clock coordinates fuel oxidation;The FASEB Journal;2020-03-24

5. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes;Annals of the New York Academy of Sciences;2019-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3