The invasive adenylate cyclase of Bordetella pertussis. Properties and penetration kinetics

Author:

Friedman E,Farfel Z,Hanski E

Abstract

Bordetella pertussis, the causative organism of whooping cough, produces a calmodulin-sensitive adenylate cyclase. Confer & Eaton [(1982) Science 217, 948-950] have shown that an extract from B. pertussis increases intracellular cyclic AMP levels in neutrophils and suggested that this increase is caused by the bacterial adenylate cyclase which penetrates these cells. We demonstrate in the present study that adenylate cyclase activity in lysates from lymphocytes exposed to a partially purified preparation of the bacterial enzyme has properties completely different from those of the intrinsic membrane-bound enzyme. Adenylate cyclase activity in lysates from lymphocytes exposed to the invasive enzyme is insensitive to N-ethylmaleimide, readily inactivated by acetic anhydride and relatively stable to SDS. Similar properties are exhibited by the bacterial enzyme itself. By contrast, the intrinsic membrane-bound enzyme activated by forskolin and guanosine 5′-gamma-thiotriphosphate is sensitive to N-ethylmaleimide and SDS and relatively stable to acetic anhydride. This strongly supports the notion that B. pertussis adenylate cyclase penetrates cells. Using the partially purified preparation of the invasive enzyme, we have studied the kinetics of its penetration. The intracellular catalytic activity reaches a steady state within 20 min, irrespective of enzyme or cell concentration. Steady-state levels are maintained for at least 2 h provided that the invasive enzyme is present in the incubation medium. Upon its removal, a rapid decrease (t1/2 approximately equal to 15 min) in the intracellular cyclase level is observed. This decrease reflects intracellular inactivation of the bacterial enzyme and is not caused by the release of the enzyme to the cell medium.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3