The allosteric properties of rat liver fructose-1,6-bisphosphatase

Author:

Meek D W,Nimmo H G

Abstract

Inhibition of rat liver fructose-1,6-bisphosphatase by AMP was uncompetitive with respect to fructose 1,6-bisphosphate in the absence of fructose 2,6-bisphosphate, but non-competitive in its presence. AMP was unable to bind to the enzyme except in the presence of one of the fructose bisphosphates; the binding stoicheiometry was 2 molecules/tetramer. Increasing concentrations of Mg2+ increased the Hill coefficient h and the apparent Ki for AMP, whereas fructose 2,6-bisphosphate had the opposite effect. Increasing concentrations of both AMP and fructose 2,6-bisphosphate decreased h and increased the apparent Ka for Mg2+. AMP slightly decreased, and Mg2+ slightly increased, the apparent Ki for fructose 2,6-bisphosphate, but each had only small effects on h. These results are interpreted in terms of a new three-state model for the allosteric properties of the enzyme, in which fructose 2,6-bisphosphate can bind both to the catalytic site and to an allosteric site and AMP can bind to the enzyme only when the catalytic site is occupied.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes;Proceedings of the National Academy of Sciences;2009-07-08

2. cpFBPaseII, a novel redox-independent chloroplastic isoform of fructose-1,6-bisphosphatase;Plant, Cell & Environment;2009-07

3. Fructose 2,6-Bisphosphate;Advances in Enzymology - and Related Areas of Molecular Biology;2006-11-22

4. Mechanism of fat-induced hepatic gluconeogenesis: effect of metformin;American Journal of Physiology-Endocrinology and Metabolism;2001-08-01

5. Regulatory properties of Rana esculenta liver d-fructose-1,6-bisphosphate 1-phosphohydrolase and their comparison with properties of other vertebrate liver isoenzymes;Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology;1999-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3