Abstract
Inhibition of rat liver fructose-1,6-bisphosphatase by AMP was uncompetitive with respect to fructose 1,6-bisphosphate in the absence of fructose 2,6-bisphosphate, but non-competitive in its presence. AMP was unable to bind to the enzyme except in the presence of one of the fructose bisphosphates; the binding stoicheiometry was 2 molecules/tetramer. Increasing concentrations of Mg2+ increased the Hill coefficient h and the apparent Ki for AMP, whereas fructose 2,6-bisphosphate had the opposite effect. Increasing concentrations of both AMP and fructose 2,6-bisphosphate decreased h and increased the apparent Ka for Mg2+. AMP slightly decreased, and Mg2+ slightly increased, the apparent Ki for fructose 2,6-bisphosphate, but each had only small effects on h. These results are interpreted in terms of a new three-state model for the allosteric properties of the enzyme, in which fructose 2,6-bisphosphate can bind both to the catalytic site and to an allosteric site and AMP can bind to the enzyme only when the catalytic site is occupied.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献