Learning RuBisCO's birth and subsequent environmental adaptation

Author:

Ashida Hiroki1,Mizohata Eiichi23,Yokota Akiho4ORCID

Affiliation:

1. Graduate School of Human Development and Environment, Kobe University, Tsurukabuto, Kobe City 657-8501, Japan

2. Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan

3. JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan

4. Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan

Abstract

Abstract It is believed that organisms that first appeared after the formation of the earth lived in a very limited environment, making full use of the limited number of genes. From these early organisms' genes, more were created by replication, mutation, recombination, translocation, and transmission of other organisms' DNA; thus, it became possible for ancient organisms to grow in various environments. The photosynthetic CO2-fixing enzyme RuBisCO (ribulose 1,5-bisphosphate carboxylase/oxygenase) began to function in primitive methanogenic archaea and has been evolved as a central CO2-fixing enzyme in response to the large changes in CO2 and O2 concentrations that occurred in the subsequent 4 billion years. In this review, the processes of its adaptation to be specialized for CO2 fixation will be presented from the viewpoint of functions and structures of RuBisCO.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3