Inside job: how the ESCRTs release HIV-1 from infected cells

Author:

Hurley James H.12,Cada A. King1

Affiliation:

1. Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, U.S.A.

2. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

Abstract

Human immunodeficiency virus type 1 (HIV-1) hijacks the host endosomal sorting complex required for transport (ESCRT) proteins in order to release infectious viral particles from the cell. ESCRT recruitment is virtually essential for the production of infectious virus, despite that the main structural protein of HIV-1, Gag, is capable of self-assembling and eventually budding from membranes on its own. Recent data have reinforced the paradigm of ESCRT-dependent particle release while clarifying why this rapid release is so critical. The ESCRTs were originally discovered as integral players in endosome maturation and are now implicated in many important cellular processes beyond viral and endosomal budding. Nearly all of these roles have in common that membrane scission occurs from the inward face of the membrane neck, which we refer to as ‘reverse topology’ scission. A satisfactory mechanistic description of reverse-topology membrane scission by ESCRTs remains a major challenge both in general and in the context of HIV-1 release. New observations concerning the fundamental scission mechanism for ESCRTs in general, and the process of HIV-1 release specifically, have generated new insights in both directions, bringing us closer to a mechanistic understanding.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3