Affiliation:
1. MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, U.K.
Abstract
Abstract
The first definitive blood cells during embryogenesis are derived from endothelial cells in a highly conserved process known as endothelial-to-haematopoietic transition (EHT). This conversion involves activation of a haematopoietic transcriptional programme in a subset of endothelial cells in the major vasculature of the embryo, followed by major morphological changes that result in transitioning cells rounding up, breaking the tight junctions to neighbouring endothelial cells and adopting a haematopoietic fate. The whole process is co-ordinated by a complex interplay of key transcription factors and signalling pathways, with additional input from surrounding tissues. Diverse model systems, including mouse, chick and zebrafish embryos as well as differentiation of pluripotent cells in vitro, have contributed to the elucidation of the details of the EHT, which was greatly accelerated in recent years by sophisticated live imaging techniques and advances in transcriptional profiling, such as single-cell RNA-Seq. A detailed knowledge of these developmental events is required in order to be able to apply it to the generation of haematopoietic stem cells from pluripotent stem cells in vitro — an achievement which is of obvious clinical importance. The aim of this review is to summarise the latest findings and describe how these may have contributed towards achieving this goal.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献