Interaction of the lacZ β-galactosidase of Escherichia coli with some β-d-galactopyranoside competitive inhibitors

Author:

Loeffler R. S. Thomas1,Sinnott Michael L.1,Sykes Brian D.2,Withers Stephen G.1

Affiliation:

1. Department of Organic Chemistry, University of Bristol, Bristol BS8 1TS, U.K.

2. MRC (Canada) Group on Protein Structure and Function, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

Abstract

1. The location of the bivalent metal cation with respect to bound competitive inhibitors in Escherichia coli (!lacZ) β-galactosidase was investigated by proton magnetic resonance. 2. Replacement of Mg2+ by Mn2+ enhances both longitudinal and transverse relaxation of the methyl groups of the β-d-galactopyranosyltrimethylammonium ion, and of methyl 1-thio-β-d-galactopyranoside; linewidths are narrowed by increasing temperature. 3. The Mn2+ ion is located 8–9Å (0.8–0.9nm) from the centroid of the trimethylammonium group and 9Å (0.9nm) from the average position of the methylthio protons. 4. The effective charge at the active site was probed by measurement of competitive inhibition constants (Kio and Ki+ respectively) for the isosteric ligands, β-d-galactopyranosylbenzene and the β-d-galactopyranosylpyridinium ion. 5. The ratio of inhibition constants (Q=Ki+/Kio) obtained with 2-(β-d-galactopyranosyl)–naphthalene and the β-d-galactopyranosylisoquinolinium ion at pH7 with Mg2+–enzyme was identical, within experimental error, with that obtained with the monocyclic compounds. 6. The variation of Q for Mg2+–enzyme can be described by Q=0.1(1+[H+]/4.17×10−10)/1+[H+]/10−8). 7. This, in the theoretical form for a single ionizable group, is ascribed to the ionization of the phenolic hydroxy group of tyrosine-501. 8. The variation of Q for Mg2+-free enzyme is complex, probably because of deprotonation of the groups normally attached to Mg2+ as well as tyrosine-501.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3