SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation

Author:

Thastrup Jacob O.1,Rafiqi Fatema H.1,Vitari Alberto C.1,Pozo-Guisado Eulalia1,Deak Maria1,Mehellou Youcef1,Alessi Dario R.1

Affiliation:

1. MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, U.K.

Abstract

Mutations in the WNK [with no lysine (K) kinase] family instigate hypertension and pain perception disorders. Of the four WNK isoforms, much of the focus has been on WNK1, which is activated in response to osmotic stress by phosphorylation of its T-loop residue (Ser382). WNK isoforms phosphorylate and activate the related SPAK (SPS1-related proline/alanine-rich kinase) and OSR1 (oxidative stress-responsive kinase 1) protein kinases. In the present study, we first describe the generation of double-knockin ES (embryonic stem) cells, where SPAK and OSR1 cannot be activated by WNK1. We establish that NKCC1 (Na+/K+/2Cl− co-transporter 1), a proposed target of the WNK pathway, is not phosphorylated or activated in a knockin that is deficient in SPAK/OSR1 activity. We also observe that activity of WNK1 and WNK3 are markedly elevated in the knockin cells, demonstrating that SPAK/OSR1 significantly influences WNK activity. Phosphorylation of another regulatory serine residue, Ser1261, in WNK1 is unaffected in knockin cells, indicating that this is not phosphorylated by SPAK/OSR1. We show that WNK isoforms interact via a C-terminal CCD (coiled-coil domain) and identify point mutations of conserved residues within this domain that ablate the ability of WNK isoforms to interact. Employing these mutants, we demonstrate that interaction of WNK isoforms is not essential for their T-loop phosphorylation and activation, at least for overexpressed WNK isoforms. Moreover, we finally establish that full-length WNK1, WNK2 and WNK3, but not WNK4, are capable of directly phosphorylating Ser382 of WNK1 in vitro. This supports the notion that T-loop phosphorylation of WNK isoforms is controlled by trans-autophosphorylation. These results provide novel insights into the WNK signal transduction pathway and provide genetic evidence confirming the essential role that SPAK/OSR1 play in controlling NKCC1 function. They also reveal a role in which the downstream SPAK/OSR1 enzymes markedly influence the activity of the upstream WNK activators. The knockin ES cells lacking SPAK/OSR1 activity will be useful in validating new targets of the WNK signalling pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3