Conserved residues that modulate protein trans-splicing of Npu DnaE split intein

Author:

Wu Qin1,Gao Zengqiang2,Wei Yong2,Ma Guolin1,Zheng Yuchuan3,Dong Yuhui2,Liu Yangzhong1

Affiliation:

1. CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry, University of Science and Technology of China, 230026 Hefei, Anhui, China

2. Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

3. Department of Chemistry, Huangshan University, Huangshan, Anhui 245041, China

Abstract

The first crystal trans-structure of a naturally occurring split intein has been determined for the Npu (Nostoc punctiforme PCC73102) DnaE split intein. Guided by this structure, the residues NArg50 and CSer35, well conserved in DnaE split inteins, are identified to be critical in the trans-splicing of Npu DnaE split intein. An in vitro splicing assay demonstrates that NArg50 and CSer35 play synergistic roles in modulating its intein activity. The C-terminal CAsn36 exhibits two orientations of its side chain and interacts with both NArg50 and CSer35 through hydrogen bonding. These interactions likely facilitate the cyclization of asparagine in the course of protein splicing. The mutation of either residue reduces intein activity, and correlates with the low activity of the Ssp (Cyanobacterium synechocystis sp. strain PCC6803) DnaE split intein. On the other hand, NArg50 also forms a hydrogen bond with the highly conserved F-block CAsp17, thus influencing the N–S acyl shift during N-terminal cleavage. Sequence alignments show that residues NArg50 and CSer35 are rather conserved in those split inteins that lack a penultimate histidine residue. The conserved non-catalytic residues of split inteins modulate the efficiency of protein trans-splicing by hydrogen-bond interactions with the catalytic residues at the splice junction.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference49 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3