Hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase activity in cultured chick-embryo hepatocytes and in Japanese quail (Coturnix coturnix japonica) and mice treated with polyhalogenated aromatic compounds

Author:

Lambrecht R W1,Sinclair P R12,Bement W J1,Sinclair J F12,Carpenter H M3,Buhler D R4,Urquhart A J5,Elder G H5

Affiliation:

1. Veterans Administration, White River Junction, VT 05001, U.S.A.

2. Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03756, U.S.A.

3. Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, U.S.A.

4. Toxicology Program, Oregon State University, Corvallis, OR 97331, U.S.A.

5. Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN, Wales, U.K.

Abstract

The relationship between hepatic uroporphyrin accumulation and uroporphyrinogen decarboxylase (EC 4.1.1.37) activity was investigated in cultured chick-embryo hepatocytes, Japanese quail (Coturnix coturnix japonica) and mice that had been treated with polyhalogenated aromatic compounds. Chick-embryo hepatocytes treated with 3,3′,4,4′-tetrachlorobiphenyl accumulated uroporphyrin in a dose-dependent fashion without a detectable decrease in uroporphyrinogen decarboxylase activity when either pentacarboxyporphyrinogen III or uroporphyrinogen III were used as substrates in the assay. Other compounds, such as hexachlorobenzene, parathion, carbamazepine and nifedipine, which have been shown previously to cause uroporphyrin accumulation in these cells, did not decrease uroporphyrinogen decarboxylase activity. Japanese quail treated with hexachlorobenzene for 7-10 days also accumulated hepatic uroporphyrin without any decrease in uroporphyrinogen decarboxylase activity. In contrast, hepatic uroporphyrin accumulation in male C57BL/6 mice treated with iron and hexachlorobenzene was accompanied by a 20-80% decrease in uroporphyrinogen decarboxylase activity, demonstrating that the assay used for uroporphyrinogen decarboxylase, using pentacarboxyporphyrinogen III as substrate, could detect decreased enzyme activity. Our results with chick hepatocytes and quail, showing uroporphyrin accumulation without a decrease in uroporphyrinogen decarboxylase activity, are consistent with a new two-stage model of the uroporphyria: initially uroporphyrinogen is oxidized by a cytochrome P-450-mediated reaction, followed in rodents by a progressive decrease in uroporphyrinogen decarboxylase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3