Cloning and sequencing of rat liver carboxylesterase ES-4 (microsomal palmitoyl-CoA hydrolase)

Author:

ROBBI Mariette1,VAN SCHAFTINGEN Emile1,BEAUFAY Henri1

Affiliation:

1. Laboratoire de Chimie Physiologique, Université de Louvain and International Institute of Cellular and Molecular Pathology, UCL 75.39, Avenue Hippocrate, 75 B-1200 Brussels, Belgium

Abstract

A cDNA which encodes a carboxylesterase of 561 amino acid residues including a cleavable signal peptide is described. The enzyme expressed in COS cells migrates during PAGE (SDS-, and non-denaturing) as a single prominent band in the region of liver ES-4. It ends in the C-terminal cell-retention signal -HNEL, which, in COS cells overexpressing the enzyme, appears to be slightly less efficient than the signals -HTEL and -HVEL of ES-3 and ES-10 respectively. Glycosylation is not essential for intracellular retention, but leads to a higher activity. As do many carboxylesterases, the enzyme expressed in COS cells hydrolyses o-nitrophenyl acetate and α-naphthyl acetate. It also hydrolyses acetanilide, although less efficiently than ES-3, and, distinctively, palmitoyl-CoA. In addition to the four canonical Cys residues of the carboxylesterases, it contains a fifth, unpaired Cys336, which apparently is not essential for the catalytic properties. Indeed, treatment with iodoacetamide or substitution of Cys336 by Phe does not markedly alter the activity of the enzyme on the various substrates. The predicted structure of ES-4 is highly homologous to that of two other recently cloned esterases which also end in -HNEL [Yan, Yang, Brady and Parkinson (1994) J. Biol. Chem. 269, 29688–29696; Yan, Yang and Parkinson (1995) Arch. Biochem. Biophys. 317, 222–234]. Together, these isoenzymes probably account for the closely spaced bands observed in the region of ES-4 in non-denaturing PAGE.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3