Studies on the form and synthesis of messenger ribonucleic acid in the rat ventral prostate gland, including its tissue-specific stimulation by androgens

Author:

Mainwaring W. Ian P.1,Wilce Peter A.1,Smith Allan E.2

Affiliation:

1. Department of Androgen Physiology

2. Molecular Virology

Abstract

1. When prostate polyribosomes are labelled with radioactive precursors in vivo and subsequently dissociated with sodium dodecyl sulphate, a heterogeneous 6–15S RNA species may be identified that possesses all of the distinctive properties of mRNA. 2. Apart from the selective incorporation of 5′-fluoro-orotic acid into this 6–15S RNA component, it is bound by nitrocellulose filters under experimental conditions where only poly(A)-rich species of RNA are specifically retained. Most importantly, however, only the 6–15S RNA fraction is capable of promoting the incorporation of amino acids into peptide linkage in an mRNA-depleted cell-free system derived from ascites-tumour cells. 3. With the development of a simpler method for labelling the total RNA fraction of the prostate gland in vitro, the poly(A)-enriched RNA fraction may be readily isolated by adsorption and elution from oligo(dT)-cellulose. The synthesis of the poly(A)-enriched 6–15S RNA fraction is stringently controlled by androgens in a highly tissue- and steroid-specific manner. 4. From an analysis of the proteins synthesized in the ascites cell-free system in the presence of the poly(A)-rich RNA fraction, it appears that protein synthesis in the prostate gland is stimulated in a rather general way, even during the earliest phases of the androgenic response. This conclusion may require modification when more specific means of analysis are available than those used in the present investigation. 5. The implications of these findings to the mechanism of action of androgens are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3