Enzyme-mediated cytosine deamination by the bacterial methyltransferase M.MspI

Author:

ZINGG Jean-Marc1,SHEN Jiang-Cheng1,JONES Peter A.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, School of Medicine, Los Angeles, CA 90033, U.S.A.

Abstract

Most prokaryotic (cytosine-5)-DNA methyltransferases increase the frequency of deamination at the cytosine targeted for methylation in vitro in the absence of the cofactor S-adenosylmethionine (AdoMet) or the reaction product S-adenosylhomocysteine (AdoHcy). We show here that, under the same in vitro conditions, the prokaryotic methyltransferase, M.MspI (from Moraxella sp.), causes very few cytosine deaminations, suggesting a mechanism in which M.MspI may avoid enzyme-mediated cytosine deamination. Two analogues of AdoMet, sinefungin and 5´-amino-5´-deoxyadenosine, greatly increased the frequency of cytosine deamination mediated by M.MspI presumably by introducing a proton-donating amino group into the catalytic centre, thus facilitating the formation of an unstable enzyme–dihydrocytosine intermediate and hydrolytic deamination. Interestingly, two naturally occurring analogues, adenosine and 5´-methylthio-5´-deoxyadenosine, which do not contain a proton-donating amino group, also weakly increased the deamination frequency by M.MspI, even in the presence of AdoMet or AdoHcy. These analogues may trigger a conformational change in the enzyme without completely inhibiting the access of solvent water to the catalytic centre, thus allowing hydrolytic deamination of the enzyme–dihydrocytosine intermediate. Under normal physiological conditions the enzymes M.HpaII (from Haemophilus parainfluenzae), M.HhaI (from Haemophilus hemolytica) and M.MspI all increased the in vivo deamination frequency at the target cytosines with comparable efficiency.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3