Affiliation:
1. Department of Biochemistry, University College London, Gower Street, London WC1E 6BT, U.K.
Abstract
Several hydroxy- and keto-substituted monocarboxylates were found to undergo co- as well as counter-exchange across the mitochondrial membrane. The results argue against a simple Donnan system and may be explained by the existence of a transporter for monocarboxylates. In support of this explanation it was apparently possible to ‘pump’ pyruvate to the sucrose-inaccessible space by using the dicarboxylate transporter. Further, several aromatic and aliphatic analogues of pyruvate, but not of di- or tri-carboxylate transport inhibitors, have been shown to prevent pyruvate-exchange reactions. Palmitoylcarnitine was found to have a much stronger affinity for the carrier than either carnitine or pyruvate and the possible consequences of this for carnitine-palmitoylcarnitine exchange and on the control of the pyruvate dehydrogenase complex are explored. In view of the range of transport inhibitors and substrates it is suggested that the carrier has a fairly broad specificity. ‘Inhibitor-stop’ kinetic studies show that the speed of translocation of pyruvate at 1 degrees C is of the same order as malate. The possible correlation between the role of a hydroxy-keto acid transporter in substrate exchange and some whole animal experiments is briefly discussed. It is proposed that for reasons of control the cell will require membrane monocarboxylate transporters no less than di- or tri-carboxylate carriers.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献