Characterization of a secretase activity which releases angiotensin-converting enzyme from the membrane

Author:

Oppong S Y1,Hooper N M1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.

Abstract

Angiotensin-converting enzyme (ACE; EC 3.4.1.15.1) exists in both membrane-bound and soluble forms. Phase separation in Triton X-114 and a competitive e.l.i.s.a. have been employed to characterize the activity which post-translationally converts the amphipathic, membrane-bound form of ACE in pig kidney microvilli into a hydrophilic, soluble form. This secretase activity was enriched to a similar extent as other microvillar membrane proteins, was tightly membrane-associated, being resistant to extensive washing of the microvillar membranes with 0.5 M NaCl, and displayed a pH optimum of 8.4. The ACE secretase was not affected by inhibitors of serine-, thiol- or aspartic-proteases, nor by reducing agents or alpha 2-macroglobulin. The metal chelators, EDTA and 1,10-phenanthroline, inhibited the secretase activity, with, in the case of EDTA, an inhibitor concentration of 2.5 mM causing 50% inhibition. In contrast, EGTA inhibited the secretase by a maximum of 15% at a concentration of 10 mM. The inhibition of EDTA was reactivated substantially (83%) by Mg2+ ions, and partially (34% and 29%) by Zn2+ and Mn2+ ions respectively. This EDTA-sensitive secretase activity was also present in microsomal membranes prepared from pig lung and testis, and from human lung and placenta, but was absent from human kidney and human and pig intestinal brush-border membranes. The form of ACE released from the microvillar membrane by the secretase co-migrated on SDS/PAGE with ACE purified from pig plasma, thus the action and location of the secretase would be consistent with it possibly having a role in the post-translational proteolytic cleavage of membrane-bound ACE to generate the soluble form found in blood, amniotic fluid, seminal plasma and other body fluids.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3