TNF-related apoptosis-inducing ligand significantly attenuates metabolic abnormalities in high-fat-fed mice reducing adiposity and systemic inflammation

Author:

Bernardi Stella1,Zauli Giorgio2,Tikellis Christos1,Candido Riccardo3,Fabris Bruno4,Secchiero Paola5,Cooper Mark E.1,Thomas Merlin C.1

Affiliation:

1. Baker IDI, 75 Commercial Road Melbourne, VIC, Australia

2. IRCCS Burlo Garofolo, Trieste, Italy

3. Diabetes Center ‘ASS 1 Triestina’, Trieste, Italy

4. Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy

5. Department of Morphology and Embriology, University of Ferrara, Ferrara, Italy

Abstract

TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] has recently been shown to ameliorate the natural history of DM (diabetes mellitus). It has not been determined yet whether systemic TRAIL delivery would prevent the metabolic abnormalities due to an HFD [HF (high-fat) diet]. For this purpose, 27 male C57bl6 mice aged 8 weeks were randomly fed on a standard diet, HFD or HFD+TRAIL for 12 weeks. TRAIL was delivered weekly by intraperitoneal injection. Body composition was evaluated; indirect calorimetry studies, GTT (glucose tolerance test) and ITT (insulin tolerance test) were performed. Pro-inflammatory cytokines, together with adipose tissue gene expression and apoptosis, were measured. TRAIL treatment reduced significantly the increased adiposity associated with an HFD. Moreover, it reduced significantly hyperglycaemia and hyperinsulinaemia during a GTT and it improved significantly the peripheral response to insulin. TRAIL reversed the changes in substrate utilization induced by the HFD and ameliorated skeletal muscle non-esterified fatty acids oxidation rate. This was associated with a significant reduction of pro-inflammatory cytokines together with a modulation of adipose tissue gene expression and apoptosis. These findings shed light on the possible anti-adipogenic and anti-inflammatory effects of TRAIL and open new therapeutic possibilities against obesity, systemic inflammation and T2DM (Type 2 DM).

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3