Transcriptional induction of the human asparagine synthetase gene during the unfolded protein response does not require the ATF6 and IRE1/XBP1 arms of the pathway

Author:

Gjymishka Altin1,Su Nan1,Kilberg Michael S.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, U.S.A.

Abstract

The UPR (unfolded protein response) pathway comprises three signalling cascades mediated by the ER (endoplasmic reticulum) stress-sensor proteins PERK [PKR (double-stranded RNA-activated protein kinase)-like ER kinase], IRE1 (inositol-requiring kinase 1) and ATF6 (activating transcription factor 6). The present study shows that ASNS (asparagine synthetase) transcription activity was up-regulated in HepG2 cells treated with the UPR activators thapsigargin and tunicamycin. ChIP (chromatin immunoprecipitation) analysis demonstrated that during ER stress, ATF4, ATF3 and C/EBPβ (CCAAT/enhancer-binding protein β) bind to the ASNS proximal promoter region that includes the genomic sequences NSRE (nutrient-sensing response element)-1 and NSRE-2, previously implicated by mutagenesis in UPR activation. Consistent with increased ASNS transcription, ChIP analysis also demonstrated that UPR signalling resulted in enhanced recruitment of general transcription factors, including RNA Pol II (polymerase II), to the ASNS promoter. The ASNS gene is also activated by the AAR (amino acid response) pathway following amino acid deprivation of tissue or cells. Immunoblot analysis of HepG2 cells demonstrated that simultaneous activation of the AAR and UPR pathways did not further increase the ASNS or ATF4 protein abundance when compared with triggering either pathway alone. In addition, siRNA (small interfering RNA)-mediated knockdown of XBP1 (X-box-binding protein 1), ATF6α or ATF6β expression did not affect ASNS transcription, whereas siRNA against ATF4 suppressed ASNS transcription during UPR activation. Collectively, these results indicate that the PERK/p-eIF2α (phosphorylated eukaryotic initiation factor 2α)/ATF4 signalling cascade is the only arm of the UPR that is responsible for ASNS transcriptional induction during ER stress. Consequently, ASNS NSRE-1 and NSRE-2, in addition to ERSE (ER stress response element)-I, ERSE-II and the mUPRE (mammalian UPR element), function as mammalian ER-stress-responsive sequences.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3