Cell volume and bile acid excretion

Author:

Häussinger D1,Hallbrucker C1,Saha N1,Lang F2,Gerok W1

Affiliation:

1. Medizinische Universitätsklinik, Hugstetterstrasse 55, D-7800 Freiburg, Federal Republic of Germany

2. Physiologisches Institut der Universität Innsbruck, A-6010 Innsbruck, Austria

Abstract

The interaction between cell volume and taurocholate excretion into bile was studied in isolated perfused rat liver. Cell swelling due to hypo-osmotic exposure, addition of amino acids or insulin stimulated taurocholate excretion into bile and bile flow, whereas hyperosmotic cell shrinkage inhibited these. These effects were explained by changes in Vmax of taurocholate excretion into bile: Vmax. increased from about 300 to 700 nmol/min per g after cell swelling by 12-15% caused by either hypo-osmotic exposure or addition of amino acids under normo-osmotic conditions. Steady-state taurocholate excretion into bile was not affected when the influent K+ concentration was increased from 6 to 46 mM or decreased to 1 mM with iso-osmoticity being maintained by corresponding changes in the influent Na+ concentration. Replacement of 40 mM-NaCl by 80 mM-sucrose decreased taurocholate excretion into bile by about 70%; subsequent hypo-osmotic exposure by omission of sucrose increased taurocholate excretion to 160%. Only minor, statistically insignificant, effects of aniso-osmotic cell volume changes on the appearance of bolus-injected horseradish peroxidase in bile were observed. Taurocholate (400 microM) exhibited a cholestatic effect during hyperosmotic cell shrinkage, but not during hypo-osmotic cell swelling. Both taurocholate and tauroursodeoxycholate increased liver cell volume. Tauroursodeoxycholate stimulated taurocholate (100 microM) excretion into bile. This stimulatory effect was strongly dependent on the extent of tauroursodeoxycholate-induced cell swelling. During continuous infusion of taurocholate (100 microM) further addition of tauroursodeoxycholate at concentrations of 20, 50 and 100 microM increased cell volume by 10, 8 and 2% respectively, in parallel with a stimulation of taurocholate excretion into bile by 29, 27 and 9% respectively. There was a close relationship between the extent of cell volume changes and taurocholate excretion into bile, regardless of whether cell volume was modified by tauroursodeoxycholate, amino acids or aniso-osmotic exposure. The data suggest that: (i) liver cell volume is one important factor determining bile flow and biliary taurocholate excretion; (ii) swelling-induced stimulation of taurocholate excretion into bile is probably not explained by alterations of the membrane potential; (iii) bile acids modulate liver cell volume; (iv) taurocholate-induced cholestasis may depend on cell volume; (v) stimulation of taurocholate excretion into bile by tauroursodeoxycholate can largely be explained by tauroursodeoxycholate-induced cell swelling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3