Short- and long-term effects of biliary drainage on hepatic cholesterol metabolism in the rat

Author:

Smit M J1,Temmerman A M1,Havinga R1,Kuipers F1,Vonk R J1

Affiliation:

1. Department of Pediatrics, University of Groningen, Bloemsingel 10, 9712 KZ Groningen, The Netherlands.

Abstract

The present study concerns short- and long-term effects of interruption of the enterohepatic circulation (EHC) on hepatic cholesterol metabolism and biliary secretion in rats. For this purpose, we employed a technique that allows reversible interruption of the EHC, during normal feeding conditions, and excludes effects of anaesthesia and surgical trauma. [3H]Cholesteryl oleate-labelled human low-density lipoprotein (LDL) was injected intravenously in rats with (1) chronically (8 days) interrupted EHC, (2) interrupted EHC at the time of LDL injection and (3) intact EHC. During the first 3 h after interruption of the EHC, bile flow decreased to 50% and biliary bile acid, phospholipid and cholesterol secretion to 5%, 11% and 19% of their initial values respectively. After 8 days of bile diversion, biliary cholesterol output and bile flow were at that same level, but bile acid output was increased 2-3-fold and phospholipid output was about 2 times lower. The total amount of cholesterol in the liver decreased after interruption of the EHC, which was mainly due to a decrease in the amount of cholesteryl ester. Plasma disappearance of LDL was not affected by interruption of the EHC. Biliary secretion of LDL-derived radioactivity occurred 2-4 times faster in chronically interrupted rats as compared with the excretion immediately after interruption of the EHC. Radioactivity was mainly in the form of bile acids under both conditions. This study demonstrates the very rapid changes that occur in cholesterol metabolism and biliary lipid composition after interruption of the EHC. These changes must be taken into account in studies concerning hepatic metabolism of lipoprotein cholesterol and subsequent secretion into bile.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3