Abstract
Chemiluminescence of luminol in a cell-free system was used to investigate the mechanism of alloxan-dependent free-radical generation. In the presence of alloxan and reduced glutathione (GSH), luminescence was greatly stimulated by FeSO4. Replacing GSH by oxidized glutathione or NAD(P)(H), or replacing FeSO4 by CuSO4, ZNSO4 or FeCl3, did not yield chemiluminescence. The chemiluminescence of a mixture of alloxan. GSH, FeSO4 and luminol was inhibited by catalase, superoxide dismutase, scavengers of hydroxyl radicals (sodium benzoate, n-butanol, D-mannitol, dimethyl sulphoxide) or metal-ion chelators (EDTA, diethylenetriaminepenta-acetic acid, diethyldithiocarbamate. desferroxamine), D-glucose, L-glucose, D-mannose, D-fructose, 3-O-methyl-D-glucose, NAD+, NADH, NADP+ or NADPH, but not by urea or enzymically inactive superoxide dismutase. The results support the hypothesis that the diabetogenic action of alloxan is mediated by hydroxyl radicals generated in an iron-catalysed reaction. Protection against alloxan in vivo depends both on the chemical reactivity of protector with radicals or radical-generating systems and on the stereospecific requirement of some strategic site in the B-cell.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献