Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress

Author:

MOELLERING Douglas R.1,LEVONEN Anna-Liisa1,GO Young-Mi1,PATEL Rakesh P.12,DICKINSON Dale A.3,FORMAN Henry Jay23,DARLEY-USMAR Victor M.23

Affiliation:

1. Department of Pathology, Molecular and Cellular Division, School of Public Health, University of Alabama at Birmingham, Volker Hall G019, 1670 University Boulevard, Birmingham, AL 35295-0019, U.S.A.

2. Center for Free Radical Biology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, U.S.A.

3. Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35295-0019, U.S.A.

Abstract

Exposure of endothelial cells to oxidized low-density lipoprotein (oxLDL) leads to diverse cellular effects, including induction of the intracellular antioxidant GSH. It is not known whether lipid-or protein-derived oxidation products cause GSH induction and whether this involves increased activity of the key enzyme in its synthesis, glutamate—cysteine ligase (GCL). Furthermore, the effect of oxLDL exposure on the cell's ability to combat oxidative stress has not been previously examined. In the present study we found that, in bovine aortic endothelial cells, LDL or 1-palmitoyl-2-arachidonyl phosphatidylcholine oxidized by different reactive oxygen and nitrogen species induced GSH synthesis. However, prevention of GSH synthesis during exposure to oxLDL caused extensive cell death. The mediator causing GSH induction was shown to be a polar lipid and resulted in the increased activity of GCL as well as increased protein levels of the regulatory subunit of GCL. Pretreatment with both oxLDL and the polar lipid subfraction of the oxLDL protected cells against the toxicity of 2,3-dimethoxynaphthoquinone (DMNQ), a superoxide- and H2O2-forming compound. The potential of a low level of lipid peroxidation products to initiate cytoprotective pathways are discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lipid mediated brain disorders: A perspective;Prostaglandins & Other Lipid Mediators;2023-08

2. Oxidized lipids: not just another brick in the wall;Canadian Journal of Physiology and Pharmacology;2019-06

3. Lipid Oxidation;Oxidative Stress in Applied Basic Research and Clinical Practice;2015

4. The absence of macrophage Nrf2 promotes early atherogenesis;Cardiovascular Research;2013-01-22

5. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products?;FEBS Letters;2012-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3