Affiliation:
1. Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China, 510230
2. Guangzhou Institute of Urology, Guangzhou, China
Abstract
Abstract
The present work aimed to evaluate the prognostic value of overall survival (OS)-related genes in clear cell renal cell carcinoma (ccRCC) and to develop a nomogram for clinical use. Transcriptome data from The Cancer Genome Atlas (TCGA) were collected to screen differentially expressed genes (DEGs) between ccRCC patients with OS > 5 years (149 patients) and those with <1 year (52 patients). In TCGA training set (265 patients), seven DEGs (cytochrome P450 family 3 subfamily A member 7 (CYP3A7), contactin-associated protein family member 5 (CNTNAP5), adenylate cyclase 2 (ADCY2), TOX high mobility group box family member 3 (TOX3), plasminogen (PLG), enamelin (ENAM), and collagen type VII α 1 chain (COL7A1)) were further selected to build a prognostic risk signature by the least absolute shrinkage and selection operator (LASSO) Cox regression model. Survival analysis confirmed that the OS in the high-risk group was dramatically shorter than their low-risk counterparts. Next, univariate and multivariate Cox regression revealed the seven genes-based risk score, age, and Tumor, lymph Node, and Metastasis staging system (TNM) stage were independent prognostic factors to OS, based on which a novel nomogram was constructed and validated in both TCGA validation set (265 patients) and the International Cancer Genome Consortium cohort (ICGC, 84 patients). A decent predictive performance of the nomogram was observed, the C-indices and corresponding 95% confidence intervals of TCGA training set, validation set, and ICGC cohort were 0.78 (0.74–0.82), 0.75 (0.70–0.80), and 0.70 (0.60–0.80), respectively. Moreover, the calibration plots of 3- and 5 years survival probability indicated favorable curve-fitting performance in the above three groups. In conclusion, the proposed seven genes signature-based nomogram is a promising and robust tool for predicting the OS of ccRCC, which may help tailor individualized therapeutic strategies.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献