Fingolimod inhibits proliferation and epithelial–mesenchymal transition in sacral chordoma by inactivating IL-6/STAT3 signalling

Author:

Wang Jiaqi1,Hu Wenhao2,Du Xiaowen1,Sun Ying3,Han Shuai4,Tu Guanjun1ORCID

Affiliation:

1. Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China

2. Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P.R. China

3. Department of Blood Transfusion, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China

4. Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China

Abstract

Abstract Purpose: To explore the sensitivity of the immunosuppressive agent fingolimod (FTY720) in chordoma and determine whether it can serve as an appropriate alternate treatment for unresectable tumours in patients after incomplete surgery. Methods: Cell viability assays, colony formation assays and EdU assays were performed to evaluate the sensitivity of chordoma cell lines to FTY720. Transwell invasion assays, wound healing assays, flow cytometry, cell cycle analysis, immunofluorescence analysis, Western blotting analysis and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate cell invasion, epithelial–mesenchymal transition (EMT) and activation of related pathways after treatment with FTY720. The effect of FTY720 was also evaluated in vivo in a xenograft model. Results: We found that FTY720 inhibited the proliferation, invasion and metastasis of sacral chordoma cells (P < 0.01). FTY720 also inhibited the proliferation of tumour cells in a xenograft model using sacral chordoma cell lines (P < 0.01). The mechanism was related to the EMT and apoptosis of chordoma cells and inactivation of IL-6/STAT3 signalling in vitro and in vivo. Conclusions: Our findings indicate that FTY720 may be an effective therapeutic agent against chordoma. These findings suggest that FTY720 is a novel agent that can treat locally advanced and metastatic chordoma.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3