Screening for deafness-associated mitochondrial 12S rRNA mutations by using a multiplex allele-specific PCR method

Author:

Ding Yu1ORCID,Lang Jianyong2,Zhang Junkun3,Xu Jianfeng4,Lin Xiaojiang5,Lou Xiangyu6,Zheng Hui1,Huai Lei1

Affiliation:

1. Central laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

2. Department of Otolaryngology, Fuyang Second People’s Hospital, Hangzhou, China

3. Department of Otolaryngology, Chun’an Traditional Chinese Hospital, Hangzhou, China

4. Department of Otolaryngology, Jiande Second People’s Hospital, Hangzhou, China

5. Department of Otolaryngology, Kaihua People’s Hospital, Quzhou, China

6. Department of Otolaryngology, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

Abstract

Abstract Mitochondrial 12S rRNA A1555G and C1494T mutations are the major contributors to hearing loss. As patients with these mutations are sensitive to aminoglycosides, mutational screening for 12S rRNA is therefore recommended before the use of aminoglycosides. Most recently, we developed a novel multiplex allele-specific PCR (MAS-PCR) that can be used for detecting A1555G and C1494T mutations. In the present study, we employed this MAS-PCR to screen the 12S rRNA mutations in 500 deaf patients and 300 controls from 5 community hospitals. After PCR and electrophoresis, two patients with A1555G and one patient with C1494T were identified, this was consistent with Sanger sequence results. We further traced the origin of three Chinese pedigrees. Clinical evaluation revealed variable phenotypes of hearing loss including severity, age at onset and audiometric configuration in these patients. Sequence analysis of the mitochondrial genomes from matrilineal relatives suggested the presence of three evolutionarily conserved mutations: tRNACys T5802C, tRNALys A8343G and tRNAThr G15930A, which may result the failure in tRNAs metabolism and lead to mitochondrial dysfunction that was responsible for deafness. However, the lack of any functional variants in GJB2, GJB3, GJB6 and TRMU suggested that nuclear genes may not play active roles in deafness expression. Hence, aminoglycosides and mitochondrial genetic background may contribute to the clinical expression of A1555G/C1494T-induced deafness. Our data indicated that the MAS-PCR was a fast, convenience method for screening the 12S rRNA mutations, which was useful for early detection and prevention of mitochondrial deafness.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3